
Set 9: Planning
Classical Planning Systems

Chapter 10 R&N

ICS 271 Fall 2016

Outline: Planning
• Planning environments

• Classical Planning:

– Situation calculus

– PDDL: Planning domain definition language

• STRIPS Planning

• SAT planning

• Planning graphs

• Readings: Russel and Norvig chapter 10

What is planning?
• “Planning is a task of finding a sequence of actions that

will transfer the initial world into one in which the goal
description is true.”

• “The planning can be seen as a sequence of actions
generator which are restricted by constraints describing
the limitations on the world under view.”

• “Planning as the process of devising, designing or
formulating something to be done, such as the
arrangements of the parts of a thing or an action or
proceedings to be carried out.”

Setup

• Actions : deterministic/non-deterministic?

• State variables : discreet/continuous?

• Current state : observable?

• Initial state : known?

• Actions : duration?

• Actions : 1 at a time?

• Objective : reach a goal? maximize utility/reward?

• Agent : 1 or more? Cooperative/competitive?

• Environment : Known/unknown, static?

Setup
• Classical planning:

– Actions : deterministic

– States : fully observable, initial state known

– Environment : known and static

– Objective : reach a goal state

• Games
– Agents : 2 (or more) competing

– Objective : maximize utility

• Conformant planning:
– Actions : non-deterministic

– States : not observable, initial state unknown

– Objective : maximize probability of reaching the goal

• Markov decision process (MDP):
– Actions : non-deterministic with probabilities known

– States : fully observable

– Objective : maximize reward

Planning vs Scheduling

• Objective :

– find a sequence of actions

– find an allocation of jobs to resources

• Solution

– Plan length unknown

– Number of jobs to schedule known

• Complexity

– PSPACE (planning)

– NP-hard (scheduling)

The Situation Calculus

• A goal can be described by a sentence:
if we want to have a block on B

• Planning: finding a set of actions to achieve a goal
sentence.

• Situation Calculus (McCarthy, Hayes, 1969, Green 1969)

– A Predicate Calculus formalization of states, actions, and
their effects.

– So state in the figure can be described by:

we reify the state and
include them as arguments

),()(BxOnx

)()(),(),(),(FlclearBClearFlCOnCAOnABOn 

The Situation Calculus (continued)

• The atoms denotes relations over states called fluents.

• We can also have.

• Knowledge about state and actions = predicate calculus knowledge base.
• Inference can be used to answer:

– Is there a state satisfying a goal?
– How can the present state be transformed into that state by actions? The

answer is a plan

)],()(),,()[,,(syClearFlysyxOnsyx 

)
0

,()
0

,,()
0

,,()
0

,,(SBclearSFlCOnSCAOnSABOn 

),()(sFlClears

Representing Actions

• Reify the actions: denote an action by a symbol

• actions are functions

• move(B,A,Floor): move block A from block B to Floor

• move(x,y,z) - action schema

• do: A function constant, do denotes a function that maps
actions and states into states

– 1),( do

action
state

Representing Actions (continued)

• Express the effects of actions.

– Example: (on, move) (expresses the effect of move on “On”)

– Positive effect axiom:

– Negative effect axiom:

))]),,,((,,()(),(),(),,([szyxmovedozxOnzxszClearsxClearsyxOn 

))]),,,((,,()(),(),(),,([szyxmovedoyxOnzxszClearsxClearsyxOn 

 Positive: describes how action makes a fluent true

 Negative : describes how action makes a fluent false

 Antecedent: pre-condition for actions

 Consequent: how the fluent is changed

Frame Axioms
• Not everything true can be inferred

On(C,Fl) remains true but cannot be inferred

• Actions have local effect

– We need frame axioms for each action and each fluent that does
not change as a result of the action

– example: frame axioms for (move, on)

– If a block is on another block and move is not relevant, it will stay
the same.

• Positive:

• Negative:

))),,,((,,()](),,([szvumovedoyxOnuxsyxOn 

)),,,((,,()])()[(),,((szvumovedoyxOnzyuxsyxOn 

Frame Axioms (continued)

– Frame axioms for (move, clear):

– The frame problem: need axioms for every
combination of {action, predicate, fluent}!!!

– There are languages that embed some assumption
on frame axioms that can be derived automatically:
• Default logic
• Negation as failure
• Nonmonotonic reasoning
• Minimizing change

))),,,((,()(),(szyxmovedouClearzusuClear 

))),,,((,()(),(szyxmovedouClearyusuClear 

PDDL: Planning Domain Definition
Language

STRIPS Planning systems

STRIPS: describing goals and state

• On(B,A)

• On(A,C)

• On(C,Fl)

• Clear(B)

• Clear(Fl)

• State descriptions: conjunctions of ground functionless atoms

– Factored representation of states!

• A formula describes a set of world states : On(A,B)  Clear(A)

• Lifted version (schema): On(x,B)  Clear(x)

• Initial state is a conjunction of ground atoms

• Planning search for a formula satisfying a goal description

– Goal wff:

– Given a goal wff, the search algorithm looks for a sequence of actions that
transforms initial state into a state description that entails the goal wff.

)]()([yQxPx 

STRIPS: description of actions

• A STRIPS operator (action) has 3 parts:
– A set PC, of ground literals (preconditions)
– A set D, of ground literals called the delete list
– A set A, of ground literals called the add list

• Usually described by Schema: Move(x,y,z)
– PC: On(x,y) and Clear(x) and Clear(z)
– D: Clear(z), On(x,y)
– A: On(x,z), Clear(y), Clear(Fl)

• Lifting from prop logic level of representation to FOL
level of representation

• A state Si+1 is created applying operator O by adding A
and deleting D to/from Si.

Example: the move operator

PDDL vs STRIPS
• A language that yields a search problem : actions translate into operators in search space

• PDDL is a slight generalization of STRIP language

• A state is

– a set of positive ground literals (STRIPS)

– a set of ground literals (PDDL)

• Closed world assumption : fluents that are not mentioned are false (STRIPS).

• If a literals is not mentioned, it is unknown (PDDL).

• Action schema:

Action(Fly(p,from,to)):

Precond: At(p,from)  Plane(p)  Airport(from)  Airport(to)

Effect:  At(p,from)  At(p,to)

• The schema consists of precondition and effect lists :

– Only positive preconditions (STRIPS)

– Positive or negative preconditions (PDDL)

• A set of action schemas is a definition of a planning domain.

• A specific problem is defined by an initial state (a set of ground atoms) and a goal:
conjunction of atoms, some not grounded (At(p,SFO), Plane(p))

The block world

Summary so far
• Planning as inference : situation calculus

– States defined by FOL sentences

– Action effect sentences as FOL sentences

– Frame axioms : for every action X predicate X object, define what effect non-
related action has, as FOL sentences

– Computational issues : ineffective inf procedure, semi-decidability of FOL

• Planning as search
– PDDL (STRIPS) language

– States defined by a set of literals (pos or neg)

– Actions defined by action schemas : PC, AL/DL (Effects list)

– An action can be executed in a state if PC is satisfied in the state

– A set of action schemas = planning domain

– Planning domain + initial/goal states = planning problem instance

– This formulation naturally defines a search space

– This formulation also lends itself to automatic heuristic generation

A STRIP/PDDL description of an aircargo
transportation problem

In(c,p)- cargo c is inside plane p

At(x,a) – object x is at airport a

Problem: flying cargo in planes from one location to another

STRIP for spare tire problem
Problem: Changing a flat tire

Complexity of classical planning

• Tasks

– PlanSAT = decide if plan exists

– Bounded PlanSAT = decide if plan of given length
exists

• (Bounded) PlanSAT decidable but PSPACE-hard

• Disallow neg effects, (Bounded) PlanSAT NP-hard

• Disallow neg preconditions, PlanSAT in P but
finding optimal (shortest) plan still NP-hard

Recursive STRIPS
• STRIPS algorithm :

– Divide-and-Conquer forward search with islands

– Achieve one subgoal at a time : achieve a new goal literal
without ever violating already achieved goal literals or
maybe temporarily violating previous subgoals.

• Motivated by General Problem Solver (GPS) by
Newell Shaw and Simon (1959) - Means-Ends
analysis.

• Each subgoal is achieved via a matched rule, then its
preconditions are subgoals and so on. This leads to a
planner called STRIPS(gamma) when gamma is a goal
formula.

Recursive STRIPS algorithm

• Algorithm maintains a set of goals

– Start with all problem instance goals

– At each iterations, take and satisfy one goal

• Algorithm :

1. Take a goal from goal set

2. Find a sequence of actions satisfying the goal from the
current state, apply the actions, resulting in a new state.

3. If stack empty, then done.

4. Otherwise, the next goal is considered from the new state.

5. At the end, check goals again.

The Sussman anomaly

• RSTRIPS cannot find a valid plan

• Two possible orderings of subgoals:

– On(A,B) and On(B,C) or

– On(B,C) and On(A,B)

• Non-interleaved planning does not work if goals
are dependent

C

A

B

A

C

B

Algorithms for Planning as State-space
Search

• Forward (progression) state-space search

– Search with applicable actions

• Backward (regression) state-space search

– Search with relevant actions

• Heuristic search

• Planning graphs

• Planning as satisfiability

Planning forward and backward

Forward Search Methods:
can use A* with some h and g

But, we need good heuristics

C

A

B

C

B

A

Backward search methods
• Regressing a ground operator :

g’ = (g – ADD(a))  PreCond(a)

Regressing an action schema

Example of Backward Search

Forward vs Backward planning
search

• Forward search space nodes correspond to individual
(grounded) states of the plan state-space

• Backward search space nodes correspond to sets of plan
state-space states, due to un-instantiated variables

– because of this, designing good heuristics is hard(er)

– however, it has smaller branching factor than FS

• Forward search only feasible if good heuristics available

Heuristics for planning

• Use relax problem idea to get lower bounds on
least number of actions to the goal
– Add edges to the plan state-space graph

• E.g. remove all or some preconditions

– State abstraction (combining states)

• Sub-goal independence: compute the cost of
solving each subgoal in isolation, and combine the
costs, e.g. the sum of costs of solving each, or max
cost
– Can be pessimistic (interacting sub-plans)
– Can be optimistic (negative effects)

• Various ideas related to removing negative/positive
effects/preconditions.

More on heuristic generation
• Ignore pre-conditions (example, 15 puzzle) : still hard,

approximation easy but may not be admissible

• Ignore delete list: allow making monotone progress toward
the goal.

– Still NP-hard for optimal solution, but hill-climbing algorithms find
an approximate solution in polynomial time that is admissible

• Abstraction: Combines many states into a single one: E.g.
ignore some fluents, pattern databases

• FF : Fast-forward planner (Hoffman 2005), a forward state-
space planner with

– ignore-delete-list based heuristic

– using planning graph to compute heuristic value

– greedy search

Planning Graphs

• A planning graph consists of a sequence of levels
that correspond to time-steps in the plan

• Level 0 is the initial state.
• Each level contains a set of literals and a set of

actions
• Literals are those that could be true at the time

step.
• Actions are those that their preconditions could

be satisfied at the time step.
• Works only for propositional planning.

Example:Have cake and eat it too

The Planning graphs for “have cake”,

• Persistence actions: Represent “inactions” by boxes: frame axiom

• Mutual exclusions (mutex) are represented between literals and actions.

• S1 represents multiple states

• Continue until two levels are identical. The graph levels off.

• The graph records the impossibility of certain choices using mutex links.

• Complexity of graph generation: polynomial in number of literals.

Defining Mutex relations
• A mutex relation holds between 2 actions on the

same level iff any of the following holds:
– Inconsistency effect: one action negates the effect of another.

Example “Eat(Cake) and persistence of Have(cake)”

– Interference: One of the effects of one action is the negation
of the precondition of the other. Example “Eat(Cake) and
persistence of Have(cake)”

– Competing needs: one of the preconditions of one action is
mutually exclusive with a precondition of another.
Example: Bake(cake) and Eat(Cake).

• A mutex relation holds between 2 literals at the same
level iff
– one is the negation of the other or if each possible pair of

actions that can achieve the 2 literals is mutually exclusive

Properties of planning graphs:
termination

• Literals increase monotonically
– Once a literal is in a level it will persist to the next level

• Actions increase monotonically
– Since the precondition of an action was satisfied at a level and

literals persist the action’s precondition will be satisfied from
now on

• Mutexes decrease monotonically:
– If two actions are mutex at level Si, they will be mutex at all

previous levels at which they both appear
– If two literals are not mutex, they will always be non-mutex later

• Because literals increase and mutex decrease it is
guaranteed that we will have a level where Si = Si-1 and Ai =
Ai-1 that is, the planning graph has stabilized

Planning graphs for heuristic estimation

• Estimate the cost of achieving a goal by the level in the
planning graph where it appears.

• To estimate the cost of a conjunction of goals use one of the
following:
– Max-level: take the maximum level of any goal (admissible)
– Sum-cost: Take the sum of levels (inadmissible)
– Set-level: find the level where they all appear without Mutex

(admissible). Dominates max-level.

• Note, we don’t have to build planning graph to completion to
compute heuristic estimates

• Graph plans are an approximation of the problem.
Representing more than pair-wise mutex is not cost-effective
– E.g. On(A,B), On(B,C), On(C,A)

The GraphPlan algorithm
• Start with a set of problem goals G at the last

level S

• At each level Si, select a subset of conflict-free
actions Ai for the goals of Gi, such that

– Goals Gi are covered

– No 2 actions in Ai are mutex

– No 2 preconditions of any 2 actions in Ai are mutex

• Preconditions of Ai become goals of Si-1

• Success iff G0 is subset of initial state

Planning graph for spare tire
goal: At(Spare,Axle)

• S2 has all goals and no mutex so we can try to extract solutions

• Use either CSP algorithm with actions as variables

• Or search backwards

The GraphPlan algorithm

Searching planning-graph backwards with
heuristics

• How to choose an action during backwards
search:

• Use greedy algorithm based on the level cost of the
literals.

• For any set of goals:

• 1. Pick first the literal with the highest level cost.

• 2. To achieve the literal, choose the action with
the easiest preconditions first (based on sum or
max level of precondition literals).

Main classical planning approaches

• The most effective approaches to planning
currently are:

– Forward state-space search with carefully crafted
heuristics

– Search using planning graphs (GraphPlan or CSP)

– Translating to Boolean Satisfiability

Planning as Satisfiability

• Index propositions with time steps:
– On(A,B)_0, ON(B,C)_0

• Goal conditions:
– the goal conjuncts at time t, t is determined arbitrarily.

• Initial state :
– Assert (pos) what is known, and (neg) what is not known.

• Actions: a proposition for each action for each time slot.
– Exactly one action proposition is true are at t if serial plan is

required

• Formula : if action is true, then effect must hold
• Formula : if action is true, then preconditions must have held
• Successor state axioms need to be expressed for each action

(like in the situation calculus but it is propositional)
– Ft+1  ActionCausesFt  (Ft  ActionCausesNotFt)

Planning with propositional logic
(continued)

• We write the formula:
– initial state and action effect/precondition axioms and

successor state axioms and goal state

• We search for a model to the formula. Those actions
that are assigned true constitute a plan.

• To have a single plan we may have a mutual exclusion
for all actions in the same time slot.

• We can also choose to allow partial order plans and
only write exclusions between actions that interfere
with each other.

• Planning: iteratively try to find longer and longer plans.

SATplan algorithm

Complexity of satplan

• The total number of action symbols is:
– |T|x|Act|x|O|^p

– O = number of objects, p is scope of atoms.

• Number of clauses is higher.

• Example: 10 time steps, 12 planes, 30 airports, the complete
action exclusion axiom has 583 million clauses.

The flashlight problem
(from Steve Lavelle)

• Figure 2.18: Three operators for the flashlight
problem. Note that an operator can be
expressed with variable argument(s) for which
different instances (constants/objects) could
be substituted.

• http://planning.cs.uiuc.edu/node59.html#for:
strips

• Here is a SATplan for flashlight Battery

• http://planning.cs.uiuc.edu/node68.html

http://planning.cs.uiuc.edu/node59.html#for:strips
http://planning.cs.uiuc.edu/node68.html

Flashlight problem

• 4 objects : Cap, Battery1, Battery2, Flashlight

• 2 predicates : On (e.g. On(C,F)), In (e.g. In(B1,F))

• Initial state : On(C,F)

• Assume initially : not In(B1,F) and not In(B2,F)

• Goal : On(C,F), In(B1,F), In(B2,F)

Flashlight Problem

• 3 actions

– PlaceCap

– RemoveCap

– Insert(i)

• Plan has 4 steps :

– RemoveCap, Insert(B1), Insert(B2), PlaceCap

SATPlan
• Guess length of plan K

• Initial state : conjunction of initial state literals
and negation of all positive literals not given

• For each action and each time slot k

– ak → (pk,1 ᴧ … ᴧ pk,m) ᴧ (ek+1,1 ᴧ … ᴧ ek+1,n)

• Successor state axioms : (if something became
true, an action must have caused it)

–  lk ᴧ lk+1 → (ak,1 V … V ak,j)

• Exclusion axiom : exactly one action at a time

– ak,1 V … V ak,p for each k

–  ak,i V  ak,j for each k, i, j

SATPlan as CNF

SATPlan

• Solutions

Partial order planning

• Least commitment planning
• Nonlinear planning
• Search in the space of partial plans
• A state is a partial incomplete partially ordered plan
• Operators transform plans to other plans by:

– Adding steps
– Reordering
– Grounding variables

• SNLP: Systematic Nonlinear Planning (McAllester and
Rosenblitt 1991)

• NONLIN (Tate 1977)

A partial order plan for putting shoes and socks

Summary: Planning

• STRIPS Planning

• Situation Calculus

• Forward and backward planning

• Planning graph and GraphPlan

• SATplan

• Partial order planning

• Readings: RN chapter 10

